Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ins

On the α -migrativity of semicopulas, quasi-copulas, and copulas

R. Mesiar^{a,b}, H. Bustince^{c,*}, J. Fernandez^c

^a Department of Mathematics and Descriptive Geometry, Slovak University of Technology, SK-813 68 Bratislava, Slovakia

^b Institute of Information Theory and Automation, Czech Academy of Sciences, CZ-182 08 Prague, Czech Republic

^c Departamento de Automática y Computación, Universidad Pública de Navarra, Campus Arrosadia s/n, P.O. Box 31006, Pamplona, Spain

ARTICLE INFO

Keywords: Semicopulas Copulas Quasi-copulas Migrativity

Article history: Received 17 March 2009 Received in revised form 27 November 2009 Accepted 21 January 2010

ABSTRACT

In this paper we address the problem of α -migrativity (for a fixed α) for semicopulas, copulas and quasi-copulas. We introduce the concept of an α -sum of semicopulas. This new concept allows us to completely characterize α -migrative semicopulas and copulas. Moreover, α -sums also provide a means to obtain a partial characterization of α -migrative quasi-copulas.

© 2010 Elsevier Inc. All rights reserved.

SCIENCES

1. Introduction and preliminaries

For some image processing applications and decision-making problems, it is important to ensure that variations in the value of some functions caused by considering just a given fraction of one of the input variables is independent of the actual choice of variable. For instance, it is sometimes of interest to darken a certain part of an image. In decision-making, the ordering of inputs may be relevant, even though the result of modifying one or another evaluation by a given ratio is the same. The concept of *migrativity* captures this idea. In this paper we focus on the α -migrativity for some fixed α ; in other words, we consider that the reduction factor is determined by a fixed factor $\alpha \in]0, 1[$.

Mathematically, the α -migrative property for a mapping $A : [0, 1] \times [0, 1] \rightarrow [0, 1]$ means that the identity

$$A(\alpha x, y) = A(x, \alpha y)$$

(1)

holds for all $x, y \in [0, 1]$. Property (2) below extended to the class of all bivariate functions on [0,1] was introduced by Durante and Sarkoci [8] and further studied by Fodor and Rudas [9], whereas the particular case of aggregation functions was considered by Beliakov and Calvo [2]. We previously investigated and characterized aggregation functions that are α -migrative for all $\alpha \in]0, 1[$ [4]; in particular, we showed that the only migrative function with neutral element 1 is the product $\Pi(x, y) = xy$.

Property (2) for some specific aggregation functions has already been considered in the literature. In particular, the following problem was posed for t-norms by Mesiar and Novák [11].

Problem. Is there any t-norm *T* different from

 $T(x, y) = \begin{cases} cxy & \text{if } \max(x, y) < 1, \\ \min(x, y) & \text{otherwise,} \end{cases}$

^{*} Corresponding author.

E-mail addresses: mesiar@math.sk (R. Mesiar), bustince@unavarra.es (H. Bustince).

^{0020-0255/\$ -} see front matter \circledcirc 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.ins.2010.01.024

such that, for a fixed $\alpha \in]0, 1[$

$$T(\alpha x, y) = T(x, \alpha y) \quad \text{for any } x, y < 1?$$
(2)

This problem was definitively solved by Budincevic and Kurilic [3]. Based on their ideas, Mesiar and colleagues proposed a t-norm T_* ([10, Exp. 2.11]) studied by Smutná [14]:

$$T_{*}(x, y) = \begin{cases} \sum_{n=1}^{\infty} \frac{1}{2^{x_{n}+y_{n}-n}} & \text{if } x, y \in]0, 1], \\ 0 & \text{otherwise}, \end{cases}$$
(3)

where, if x > 0(y > 0), $(x_n)((y_n))$ is a strictly increasing sequence in \mathbb{N} such that

$$x = \sum_{n=1}^{\infty} \frac{1}{2^{x_n}} \left(y = \sum_{n=1}^{\infty} \frac{1}{2^{y_n}} \right).$$

Evidently, for $\alpha = 2^{-k}$ with $k \in \mathbb{N}$

$$2^{-k}x=\sum\frac{1}{2^{x_n+k}},$$

and analogously for y (here and subsequently, whenever the summation bounds are omitted, the index is understood to vary from 1 to ∞). Thus, we have:

$$T_*(\alpha x, y) = T_*(x, \alpha y)$$

for all x, y < 1 (even for all $x, y \leq 1$) and for all $\alpha = 2^{-k}$ with $k \in \mathbb{N}$.

The case of α -migrative t-norms has also been considered [6,8,9]. In the particular case of continuous t-norms, they were shown to be strict t-norms generated by an additive generator $t : [0, 1] \rightarrow [0, \infty]$ satisfying

$$t(x) = kt(\alpha) + t(\alpha^{-k}x), \tag{4}$$

for all $x \in [\alpha^{k+1}, \alpha^k]$, $k \in \{0, 1, 2, ...\}$ (i.e., on $[\alpha, 1]$ the choice of *t* is free).

Inspired by the results mentioned above, we investigated α -migrative semicopulas with a special focus on copulas and quasi-copulas. Observe that for associative copulas α -migrativity forces the strictness of the discussed copula and α -migrative strict copulas are generated by an additive generator t given by (4) [2], additionally satisfying the convexity property, i.e., t is convex on $[\alpha, 1]$ and $t'(1^-) \leq \alpha t'(\alpha^+)$. Here and in the following, for a given function $f : [0, 1] \rightarrow [0, 1]$ and for a point $x_0 \in [0, 1], f(x_0^+)$ and $f(x_0^-)$ denote the limit from the right and from the left, respectively, of f at x_0 .

For convenience, we now describe some of the basic notions involved in our study.

Definition 1.1. A (bivariate) aggregation function is a mapping $A : [0, 1] \times [0, 1] \rightarrow [0, 1]$ such that

(i) A(0, 0) = 0 and A(1, 1) = 1; and

(ii) A is non-decreasing in both variables.

Definition 1.2. Let $\alpha \in [0, 1]$. An aggregation function $A : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is α -migrative if the identity

$$A(\alpha x, y) = A(x, \alpha y)$$

holds for all $x, y \in [0, 1]$.

Definition 1.3. An aggregation function $S : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a semicopula if 1 is its neutral element, i.e., S(x, 1) = S(1, x) = x for all $x \in [0, 1]$. A 1-Lipschitz semicopula, i.e., a semicopula Q satisfying

 $|Q(x, y) - Q(x', y')| \leq |x - x'| + |y - y'|,$

for all $x, y, x', y' \in [0, 1]$, is called a quasi-copula.

A semicopula C that is 2-increasing, that is:

 $C(x, y) + C(x', y') - C(x, y') - C(x', y) \ge 0,$

for all $0 \le x \le x' \le 1$ and $0 \le y \le y' \le 1$, is called a copula.

More details are available elsewhere [1,12]. Note that each copula is also a quasi-copula and that quasi-copulas that are not copulas are termed proper.

The remainder of the paper is organized as follows. In the next section, α -migrative semicopulas are characterized and the α -migrative sum of α -migrative semicopulas is introduced. Section 3 is devoted to the study of α -migrative copulas and quasicopulas. In particular, we describe expression (3) for T_* . In Section 4, some final considerations are discussed.

2. α-Migrative semicopulas

Throughout the remainder of the paper, $\alpha \in]0, 1[$ is fixed. Because semicopulas possess a neutral element 1, it is evident that each α -migrative semicopula *S* satisfies:

$$S(\alpha, x) = S(x, \alpha) = \alpha x,$$

and by induction

 $S(\alpha^k, x) = S(x, \alpha^k) = \alpha^k x,$

for k = 2, 3, ... Hence, for any α -migrative semicopula S the following result holds.

Lemma 2.1. Let $S : [0, 1] \times [0, 1]$ be an α -migrative semicopula. Then, for any $x, y \in [0, 1]$ such that $\{x, y\} \cap \{1, \alpha, \alpha^2, \ldots\} \neq \emptyset$, it holds that

 $S(x, y) = \Pi(x, y) = xy.$

The next result can also be obtained by induction.

Lemma 2.2. Let $S : [0, 1] \times [0, 1]$ be an α -migrative semicopula. Then, for any $x, y \in [0, 1]$ and $k, m, i, j \in \{0, 1, 2, ...\}$, it holds that

$$S(\alpha^k x, \alpha^m y) = S(\alpha^i x, \alpha^j y)$$

whenever k + m = i + j.

These two lemmas have a crucial impact on the following definition. We denote $\mathbb{N}_0 = \{0, 1, 2, ...\}$.

Definition 2.1. Let $(S_i)_{i \in \mathbb{N}_0}$ be a system of α -migrative semicopulas. Then the function $S : [0, 1] \times [0, 1] \rightarrow [0, 1]$ given by

$$S(x, y) = \begin{cases} S_i(x, y) & \text{if } (x, y) \in E_i \text{ for some } i \in \mathbb{N}_0, \\ 0 & \text{otherwise,} \end{cases}$$

where for $i \in \mathbb{N}_0$, $E_i = \bigcup_{m,k \in \mathbb{N}_0; m+k=i} [\alpha^{k+1}, \alpha^k] \times [\alpha^{m+1}, \alpha^m]$, is called α -migrative sum of $(S_i)_{i \in \mathbb{N}_0}$. This is denoted by $S = \alpha - (S_i)_{i \in \mathbb{N}_0}$.

Fig. 1 provides a representation of the sets E_i .

Proposition 2.3. The α -migrative sum of semicopulas is a semicopula.

Proof. First, we consider the neutrality of 1. Clearly S(1, 0) = S(0, 1) = 0, and if $x \in]\alpha^{k+1}, \alpha^k]$ for some $k \in \mathbb{N}_0$, then

 $S(1, x) = S_k(1, x) = x = S_k(x, 1) = S(x, 1),$

Fig. 1. Structure of an α -migrative sum of semicopulas, with $\alpha = 0.7$.

so the result follows. The non-decreasing nature of *S* on *E_i* follows from the non-decreasing property of *S_i*. It remains to show that $S(x, y) \leq S(x', y)$ when $(x', y) \in E_i$, $(x, y) \in E_j$ and j > i (and similarly for the other variable). Suppose $y \in]\alpha^{m+1}, \alpha^m]$. Then

$$x \in]\alpha^{j-m+1}, \alpha^{j-m}]$$
 and $x' \in]\alpha^{i-m+1}, \alpha^{i-m}],$

and hence

$$S(x, y) = S_j(x, y) \leqslant S_j(\alpha^{j-m}, y) = \alpha^{j-m}y = S_i(\alpha^{j-m}, y) \leqslant S_i(x', y) = S(x', y)$$

as required. \Box

Proposition 2.4. A semicopula *S* is α -migrative if and only if there exists a system $(S_i)_{i \in \mathbb{N}_0}$ of α -migrative semicopulas such that *S* is the α -migrative sum of S_i , i.e., $S = \alpha - (S_i)_{i \in \mathbb{N}_0}$.

Proof. Necessity is obvious, as it is enough to consider the constant system $(S)_{i \in \mathbb{N}_0}$. To prove the sufficiency, by the previous proposition we already have that the α -migrative sum $S = \alpha - (S_i)_{i \in \mathbb{N}_0}$ is a semicopula. Now observe that if $(x, y) \in E_i$, then $(\alpha x, y)$ and $(x, \alpha y)$ belong to E_{i+1} . Thus, owing to the α -migrativity of S_{i+1} , it holds that:

$$S(\alpha x, y) = S(x, \alpha y)$$

Moreover, xy = 0 if and only if $\alpha xy = 0$, and in this case:

 $S(\alpha x, y) = S(x, \alpha y) = 0.$

Consequently, each α -migrative sum is α -migrative. \Box

The next result follows directly from Definition 1.2 and Lemma 2.1.

Proposition 2.5. Let *S* be an α -migrative semicopula. Then the mapping $D : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ given by

$$D(x, y) = \frac{S(\alpha + (1 - \alpha)x, \alpha + (1 - \alpha)y) - \alpha(1 - \alpha)(x + y) - \alpha^2}{(1 - \alpha)^2}$$
(5)

satisfies

(i) D(x, 0) = D(0, x) = 0 for any $x \in [0, 1]$ (i.e., 0 is an annihilator of D);

(ii) D(x, 1) = D(1, x) = x for any $x \in [0, 1]$, (i.e., 1 is a neutral element for D); and

(iii) $(1-\alpha)D(x, y) + \alpha(x+y) \leq (1-\alpha)D(x', y') + \alpha(x'+y')$ for any $x, y, x', y' \in [0, 1]$ such that $x \leq x'$ and $y \leq y'$.

Proof. First, note that for $(u, v) \in [\alpha, 1] \times [\alpha, 1]$

$$S(u, v) = \alpha(u + v) - \alpha^2 + (1 - \alpha)^2 D\left(\frac{u - \alpha}{1 - \alpha}, \frac{v - \alpha}{1 - \alpha}\right).$$

The result follows from the non-decreasing property of *S* and the identities $S(\alpha, \nu) = \alpha \nu$, $S(u, \alpha) = \alpha u$, $S(1, \nu) = \nu$ and S(u, 1) = 1. \Box

Definition 2.2. A function $D : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ satisfying the properties given in Proposition 2.5 is called an α -generating function.

Note that, regardless of the value of $\alpha \in]0, 1[$, any semicopula *S* is an α -generating function. Moreover, we have the following two results.

Proposition 2.6. The strongest semicopula $M(x, y) = \min(x, y)$ is also the strongest α -generating function. That is, M is an α -generating function and, for any other α -generating function D, the inequality

$$D(x, y) \leq M(x, y)$$

holds for all $x, y \in [0, 1]$.

Proof. The fact that $M(x, y) = \min(x, y)$ is an α -generating function follows from easy calculations. To prove that for any other α -generating function D the inequality $D(x, y) \leq M(x, y)$ holds, just observe that $D(x, y) \leq D(1, y) = y$ and $D(x, y) \leq D(x, 1) = x$ for all $x, y \in [0, 1]$. \Box

Proposition 2.7. The weakest α -generating function $D_*^{(\alpha)}$ is given by

 $D_*^{(\alpha)}(x,y) = \begin{cases} -\frac{\alpha}{1-\alpha}\min(x,y) & \text{if } \max(x,y) < 1, \\ \min(x,y) & \text{otherwise.} \end{cases}$

Proof. Let *D* be an α -generating function. From (ii) and (iii) in Proposition 2.5 it follows that, for any $x, y \in [0, 1]$

$$\alpha x = (1 - \alpha)D(x, 0) + \alpha x \leq (1 - \alpha)D(x, y) + \alpha(x + y),$$

and

$$\alpha y = (1 - \alpha)D(0, y) + \alpha y \leq (1 - \alpha)D(x, y) + \alpha(x + y),$$

so we have that

$$D(x, y) \ge \max\left(-\frac{\alpha}{1-\alpha}x, -\frac{\alpha}{1-\alpha}y\right) = -\frac{\alpha}{1-\alpha}\min(x, y),$$

as required. \Box

Now we are ready to give a complete characterization of α -migrative semicopulas.

Theorem 2.8. Let *S* be a bivariate function. Then *S* is an α -migrative semicopula if and only if there exists a system $(D_i)_{i \in \mathbb{N}_0}$ of α -generating functions such that

$$S(x, y) = \begin{cases} \alpha^{m+1}x + \alpha^{k+1}y - \alpha^{k+m+2} + (1-\alpha)^2 \alpha^{k+m} D_{k+m} \left(\frac{x-\alpha^{k+1}}{\alpha^k - \alpha^{k+1}}, \frac{y-\alpha^{m+1}}{\alpha^m - \alpha^{m+1}} \right), \\ \text{if } (x, y) \in]\alpha^{k+1}, \alpha^k] \times]\alpha^{m+1}, \alpha^m] \quad \text{for some } k, m \in \mathbb{N}_0, \\ 0 \quad \text{otherwise.} \end{cases}$$
(6)

Proof. To see the necessity, observe that, as *S* is non-decreasing, from Proposition 2.4, it follows that *S* can be written as an α -migrative sum $(S_i)_{iN_0}$. However, from Eq. (5) in Proposition 2.5, each of the terms S_i can be written in terms of an α -generating function $D_{k,m}$ for $(x, y) \in [\alpha^{k+1}, \alpha^k] \times [\alpha^{m+1}, \alpha^m]$, with $k, m \in \mathbb{N}_0$ as follows:

$$S_{i}(x, y) = \alpha^{m+1}x + \alpha^{k+1}y - \alpha^{k+m+2} + (1-\alpha)^{2}\alpha^{k+m}D_{k,m}\left(\frac{x-\alpha^{k+1}}{\alpha^{k}-\alpha^{k+1}}, \frac{y-\alpha^{m+1}}{\alpha^{m}-\alpha^{m+1}}\right)$$

Moreover, from Proposition 2.4 it also holds that $D_{k,m} = D_{k',m'}$ whenever k + m = k' + m'. Thus, the condition is necessary. To prove the sufficiency, observe that, if $(x, y) \in]\alpha^{k+1}, \alpha^k] \times]\alpha^{m+1}, \alpha^m]$, then

$$S(\alpha x, y) = \alpha^{m+1} \alpha x + \alpha^{k+1} y - \alpha^{k+m+3} + (1-\alpha)^2 \alpha^{k+m+1} D_{k+m+1} \left(\frac{\alpha x - \alpha^{k+2}}{\alpha^{k+1} - \alpha^{k+2}}, \frac{y - \alpha^{m+1}}{\alpha^m - \alpha^{m+1}} \right),$$

whereas

$$S(x, \alpha y) = \alpha^{m+2}x + \alpha^k \alpha y - \alpha^{k+m+3} + (1-\alpha)^2 \alpha^{k+m+1} D_{k+m+1} \left(\frac{x-\alpha^{k+1}}{\alpha^k - \alpha^{k+1}}, \frac{\alpha y - \alpha^{m+2}}{\alpha^{m+1} - \alpha^{m+2}} \right)$$

Evidently, $S(\alpha x, y) = S(x, \alpha y)$, ensuring the α -migrativity of *S*. To prove the monotonicity, we can use arguments similar to those for the proof of Proposition 2.4 . Finally, the fact that S(0, 0) = 0 is obvious from the definition of *S*, whereas S(x, 1) = S(1, x) = 1 for all $x \in [0, 1]$ follows from property (ii) in Proposition 2.5. \Box

Definition 2.3. Let *D* be an α -generating function. For the constant system $(D)_{i \in \mathbb{N}_0}$, the α -migrative copula given by (6) is denoted as $S_{(D, \alpha)}$.

The next result is an easy corollary of Proposition 2.4.

Corollary 2.9. A semicopula S is α -migrative if and only if S is the α -migrative sum $S = \alpha - (S_{(D_i, \alpha)})_{i \in \mathbb{N}_0}$, where $(D_i)_{i \in \mathbb{N}_0}$ is a system of α -generating functions.

Remark 1.

- (i) In Theorem 2.8 and Corollary 2.9, the choice of the system $(D_i)_{i \in \mathbb{N}_0}$ of α -generating functions has no restriction and it is evident that different systems generate different α -migrative semicopulas.
- (ii) The symmetry of an α -migrative semicopula *S* is equivalent to the symmetry of each α -generating function D_i in representation (6).
- (iii) Owing to Corollary 2.9, a prominent role in the study of α -migrative semicopulas is played by those generated by a single generating function.

Example 1.

(i) The strongest α -migrative semicopula is:

 $S_{(M,\,\alpha)}:[0,\,1] imes[0,\,1] o [0,\,1]$

given, for $(x, y) \in]\alpha^{k+1}, \alpha^k] \times]\alpha^{m+1}, \alpha^m]$, by

$$S_{(M,\alpha)}(x, y) = \alpha^{m+1}x + \alpha^{k+1}y - \alpha^{k+m+2}x + (1 - \alpha)\min(\alpha^m x - \alpha^{m+k+1}, \alpha^k y - \alpha^{m+k+1}) = \alpha^{m+1}x + \alpha^{k+1}y - \alpha^{k+m+1} + (1 - \alpha)\min(\alpha^m x, \alpha^k y).$$

Its support is depicted in Fig. 2 for $\alpha = 0.7$. Remember that the support of a semicopula *S*, by analogy with that of a copula, is its support when considered as a probability distribution function on $[0, 1]^2$; that is, the complement of the union of all open sets in $[0, 1]^2$ with *S*-measure zero [12]. Observe also that $S_{(M,\alpha)}$ is a singular copula (i.e., a copula with support having zero Lebesgue measure).

(ii) The weakest α -migrative semicopula is

$$S_{(D_*^{(\alpha)}, \alpha)} : [0, 1] \times [0, 1] \to [0, 1]$$

given, for $(x, y) \in [\alpha^{k+1}, \alpha^k] \times [\alpha^{m+1}, \alpha^m]$, by

$$S_{(D^{(\alpha)}_*,\alpha)}(x,y) = \max(\alpha^{m+1}x, \alpha^{k+1}y),$$

whereas, if $\{x, y\} \cap \{0, 1\} \neq \emptyset$

$$S_{(D^{(\alpha)}, \alpha)}(x, y) = \min(x, y)$$

- (iii) For the product Π , it holds that $\Pi = S_{\Pi,\alpha}$.
- (iv) The (1/2)-migrative t-norm T_* , introduced in Section 1, satisfies $T_* = S_{(D,\frac{1}{2})}$, where the (1/2)-generating function D is given by

$$D(x, y) = \begin{cases} 2T_*(x, y) - x - y + 1 & \text{if } \min(x, y) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

3. α-Migrative copulas and quasi-copulas

As observed in Example 1, an α -migrative semicopula $S_{(D,\alpha)}$ can be generated by an α -generating function D that is not a semicopula, as the non-decreasing property of D may be violated. By contrast, for any semicopula H, $S_{(H,\alpha)}$ is again an (α -migrative) semicopula. In the case of t-norms (associative and symmetric semicopulas), we have all possible situations. As shown in Example 1 (iv), there are t-norms generated by non-associative and non-monotonic α -generating functions. By contrast, there are t-norms of the form $S_{(T,\alpha)}$, where T is a t-norm. For example, for the Lukasiewicz t-norm $T_L(x, y) = \max(x + y - 1, 0)$, the corresponding α -migrative semicopula $S_{(T_L,\alpha)}$ is the weakest α -migrative 1-Lipschitz t-norm and its additive generator $t : [0, 1] \rightarrow [0, \infty]$ is a piecewise linear function determined by points (α^i , i), $i \in \mathbb{N}_0$ (cf. Ref. [2]). The support of $S_{(T_L,\alpha)}$ (for $\alpha = 0.7$) is depicted in Fig. 3. Example 1 (i) shows that not every t-norm T generates an α -migrative t-norm (associativity of $S_{(M,\alpha)}$ is violated). A different situation occurs for the class of copulas and quasi-copulas.

Fig. 2. Support of $S_{(M, \alpha)}$ (for $\alpha = 0.7$).

Fig. 3. Support of $S_{(T_L, \alpha)}$ (for $\alpha = 0.7$).

Theorem 3.1. A semicopula *S* is an α -migrative copula if and only if there exists a system $(C_i)_{i \in \mathbb{N}_0}$ of copulas generating *S* by means of (6).

Proof. Observe that the 2-increasing property of a function $C : [0, 1] \times [0, 1] \rightarrow [0, 1]$, together with 0 being the annihilator of *C* and 1 being the neutral element of *C*, ensures that *C* is a copula. Moreover, it is not difficult to check that the 2-increasing property of *C* over $[0, 1] \times [0, 1]$ is equivalent to the 2-increasing property of *C* over all rectangles $[\alpha^{k+1}, \alpha^k] \times [\alpha^{m+1}, \alpha^m]$, for $k, m \in \mathbb{N}_0$. These facts, together with Proposition 2.5 and Theorem 2.8, prove the result. \Box

Corollary 3.2. Let $D:[0, 1] \times [0, 1] \rightarrow \mathbb{R}$ be an α -generating function. Then the α -migrative semicopula $S_{(D, \alpha)}$ is a copula if and only if D is a copula.

It is evident that the strongest α -migrative copula is $S_{(M, \alpha)}$. As already mentioned, it is a singular copula for which the support is depicted in Fig. 3. More details on singular copulas are available elsewhere [12].

Similarly, the weakest α -migrative copula is $S_{(T_L,\alpha)}$, which is indeed a t-norm, and its additive generator (unique up to a positive multiplicative constant) $t_{(T_L,alpha)} : [0, 1] \rightarrow [0, \infty]$ is given by

$$t_{(T_L, alpha)}(x) = k(1 - \alpha) + \left(1 - \frac{x}{\alpha^k}\right) \text{ if } x \in]\alpha^{k+1}, \alpha^k]$$

In this case we also have a singular copula with support as shown in Fig. 3. For α -migrative quasi-copulas we have only a sufficient condition.

Proposition 3.3. Let $(Q_i)_{i \in \mathbb{N}_0}$ be a system of quasi-copulas. Then the α -migrative semicopula S generated by this system as in (6) is a quasi-copula. It is a proper quasi-copula whenever there is at least one proper quasi-copula in the system $(Q_i)_{i \in \mathbb{N}_n}$.

Proof. The monotonicity and 1-Lipschitz property of Q_i ensure the same properties for S on the closure of E_i . It is evident that S is a continuous α -migrative semicopula and thus 1-Lipschitzianity of S on the closures of all E_i ensures the 1-Lipschitz property of S on the whole domain $[0, 1] \times [0, 1] = \bigcup \overline{E_i}$. To prove this, observe that if $x \in [\alpha^{k+1}, \alpha^k]$ and $y \in [\alpha^{k+2}, \alpha^{k+1}]$ for some $k \in \mathbb{N}_0$, then we have that $Q(x, z) \ge Q(y, z)$ for all $z \in [0, 1]$. Thus, in particular

$$Q(x, z) - Q(y, z)| = Q_i(x, z) - Q_i(\alpha^{k+1}, z) + Q_i(\alpha^{k+1}, z) - Q_{i+1}(y, z).$$

However, owing to the continuity of Q in the closure of E_i and E_{i+1} , $Q_i(\alpha^{k+1}, z) = Q_{i+1}(\alpha^{k+1}, z)$. As $Q_i(Q_{i+1})$ is 1-Lipschitz in $E_i(E_{i+1})$, we arrive at the inequality

$$Q(x, z) - Q(y, z)| \leq (x - \alpha^{k+1}) + (\alpha^{k+1} - y) = x - y = |x - y|.$$

Since any two points in $\cup E_i$ can be connected by a finite number of steps, like this one, (perhaps also considering the other variable), the 1-Lipschitz property follows. The last claim in the statement of the Proposition is evident. \Box

Example 2. There are α -migrative quasi-copulas $S_{(D,\alpha)}$ generated by α -generating functions that are not quasi-copulas. As an example, take $D : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ given by

$$D(x, y) = \begin{cases} -\min(x, y) & \text{if } x, y \in [0, 1/3] \\ x + y - 1 & \text{if } x, y \in [1/3, 1] \\ 3xy - 2\min(x, y) & \text{otherwise.} \end{cases}$$

Then *D* is a 1/2-generating function. Moreover, it is easy to see that *D* is also a continuous and 1-Lipschitz function. If we consider the 1/2-migrative semicopula $S_{(D, 1/2)}$, we have that

$$S_{(D, 1/2)}(x, y) = \begin{cases} \frac{\max(2^{k}x, 2^{m}y)}{2^{k+m+1}} & \text{if } (x, y) \in J_{k, m}, \\ \frac{2^{k}x + 2^{m}y}{2^{k+m}} - \frac{3}{2^{k+m+2}} & \text{if } (x, y) \in L_{k, m}, \\ \frac{1 - 2^{k}x - 2^{m}y - \min(2^{k}x, 2^{m}y)}{2^{k+m}} + 3xy & \text{if } (x, y) \in I_{k, m} / \{J_{k, m} \cup L_{k, m}\} \\ 0 & \text{otherwise}, \end{cases}$$

where $I_{k,m} = [\frac{1}{2^{k+1}}, \frac{1}{2^k}] \times [\frac{1}{2^{m+1}}, \frac{1}{2^m}], J_{k,m} = [\frac{1}{2^{k+1}}, \frac{1}{3}, \frac{1}{2^{m-1}}] \times [\frac{1}{2^{m+1}}, \frac{1}{3}, \frac{1}{2^{m-1}}]$ and $L_{k,m} = [\frac{1}{3}, \frac{1}{2^{k-1}}, \frac{1}{2^k}] \times [\frac{1}{3}, \frac{1}{2^{m-1}}, \frac{1}{2^m}]$ for $k, m \in \mathbb{N}_0$. This function is 1-Lipschitz, since D is. Thus, $S_{(D,1/2)}$ is a (1/2)-migrative quasi-copula. However, it is clear that D is not a quasi-copula and not even an aggregation function since it is not greater than or equal to zero in its whole domain.

4. Concluding remarks

For a fixed $\alpha \in]0, 1[$, we have completely characterized α -migrative semicopulas and α -migrative copulas. As a by-product, a new construction method for copulas was obtained. This assigns to a given copula *C* an α -migrative copula $S_{(C, \alpha)}$. This new construction method raises a problem: is there a copula *C* different from the product Π such that $C = S_{(C, \alpha)}$? Other related problems for further investigations arise. For example, if a copula *C* is β -migrative, what can we say about the α -migrative copula $S_{(C, \alpha)}$?

Recall that Siburg and Stomeinov recently introduced a gluing construction method for copulas [13]. For $p \in]0, 1[$ and two copulas C_1 and C_2 , the function $C = vg - (\langle 0, p, C_1 \rangle, \langle 1, p, C_2 \rangle) : [0, 1] \times [0, 1] \rightarrow [0, 1]$ (where vg denotes vertical gluing), given by

$$C(x, y) = \begin{cases} pC_1(\frac{x}{p}, y) & \text{if } x \in [0, p] \\ p + (1-p)C_2\left(\frac{x-p}{1-p}, y\right) & \text{otherwise,} \end{cases}$$

is a copula. Similarly, horizontal gluing $C = hg - (\langle 0, p, C_1 \rangle, \langle p, 1, C_2 \rangle)$ is given by

$$C(x, y) = \begin{cases} pC_1\left(x, \frac{y}{p}\right) & \text{if } y \in [0, p] \\ p + (1-p)C_2\left(x, \frac{y-p}{1-p}\right) & \text{otherwise.} \end{cases}$$

The next result is also of interest for further research.

Proposition 4.1. Let $D : [0, 1] \times [0, 1] \rightarrow [0, 1]$ be an α -generating function. Then the following are equivalent.

- (i) $S_{(D,\alpha)}$ is an $\sqrt{\alpha}$ -migrative copula.
- (ii) There is a copula C such that $D = vg (\langle 0, p, hg (\langle 0, p, C \rangle, \langle p, 1, C \rangle)), \langle 1, p, hg (\langle 0, p, C \rangle, \langle p, 1, C \rangle))$, where $p = \frac{\sqrt{\alpha}}{1 + \sqrt{\alpha}}$

Note that the roles of horizontal and vertical gluing in the above proposition can be exchanged. Moreover, owing to the above proposition, any copula of type $S_{(C, \alpha)}$ can be considered as a fractal structure. Indeed, the following hold:

- (i) $S_{(C,\alpha)}(x, y) = \alpha^{-k}S_{(C,\alpha)}(\alpha^k x, \alpha^k y)$ for all $k \in \mathbb{N}_0$ and $x, y \in [0, 1]$;
- (ii) $S_{(C,\alpha)} = vg (\langle \alpha^{k+1}, \alpha^k, C_1 \rangle)$, with $k \in \mathbb{N}_0$, and where $C_1 = hg (\langle \alpha^{k+1}, \alpha^k, C \rangle)$; and
- (iii) $S_{(C,\alpha)} = hg (\langle \alpha^{k+1}, \alpha^k, C_2 \rangle)$, with $k \in \mathbb{N}_0$, and where $C_2 = vg (\langle \alpha^{k+1}, \alpha^k, C \rangle)$.

As an example, recall $S_{(M,\alpha)}$ [see Example 1 (i) and Fig. 3] for which the support of the corresponding copulas C_1 and C_2 is depicted in Figs. 3 and 4, respectively, for $\alpha = 0.7$.(See Fig. 5)

Note finally that α -migrative copulas can be viewed as a special type of rectangular patchwork based on the product copula; compare Refs. [7,5].

Fig. 4. Support of the vertical gluing copula C_1 for $S_{(M,\alpha)}$ and $\alpha = 0.7$.

Fig. 5. Support of the horizontal gluing copula C_2 for $S_{(M,\alpha)}$ and $\alpha = 0.7$.

Acknowledgements

This research was partially supported by the grants TIN2007-65981, APVV-0012-07, VEGA1/4209/07 and GACR 402/08/0618.

References

- B. Bassan, F. Spizzichino, On some properties of dependence and aging for residual lifetimes in the exchangeable case., in: B. Lindqvist, K. Doksum (Eds.), Mathematical and Statistical Methods in Reliability, World Scientific, Singapore, 2003, pp. 235–250.
- [2] G. Beliakov, T. Calvo, On migrative means and copulas. In: Proceedings of the 5th International School on Aggregation Operators, Palma de Mallorca, 2009, pp. 107–110.

- [3] M. Budincevic, M. Kurilic, A family of strict and discontinuous triangular norms, Fuzzy Sets Syst. 95 (1998) 381-384.
- [4] H. Bustince, J. Montero, R. Mesiar, Migrativity of aggregation functions, Fuzzy Sets Syst. 160 (2009) 766–777.
- [5] B. De Baets, H. De Meyer, Orthogonal grid construction for copulas, IEEE Trans. Fuzzy Syst. 15 (2007) 1053–1062.
- [6] F. Durante, R.G. Ricci, Supermigrative semi-copulas and triangular norms, Inform. Sci. 179 (2009) 2689-2694.
- [7] F. Durante, S. Saminger-Platz, P. Sarkoci, Rectangular patchwork for bivariate copulas and tail dependence, Commun. Stat. Theory Methods 38 (2008) 2515–2522.
- [8] F. Durante, P. Sarkoci, A note on the convex combinations of triangular norms, Fuzzy Sets Syst. 159 (2008) 77-80.
- [9] J. Fodor, I.J. Rudas, On continuous triangular norms that are migrative, Fuzzy Sets Syst. 158 (2007) 1692–1697.
- [10] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.
- [11] R. Mesiar, V. Novák, Open problems from the 2nd international conference of fuzzy sets theory and its applications, Fuzzy Sets Syst. 81 (1996) 185–190.
- [12] R.B. Nelsen, An introduction to copulas, Lecture Notes in Statistics, Vol. 139, Springer, New York, 1999.
- [13] K.F. Siburg, P. Stoimenov, Gluing copulas, Commun. Stat. Theory Methods 37 (2008) 3124-3134.
- [14] D. Smutná, On a peculiar t-norm, BUSEFAL 75 (1998) 60-67.