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1. Introduction and preliminaries

For some image processing applications and decision-making problems, it is important to ensure that variations in the
value of some functions caused by considering just a given fraction of one of the input variables is independent of the actual
choice of variable. For instance, it is sometimes of interest to darken a certain part of an image. In decision-making, the order-
ing of inputs may be relevant, even though the result of modifying one or another evaluation by a given ratio is the same. The
concept of migrativity captures this idea. In this paper we focus on the o-migrativity for some fixed «; in other words, we
consider that the reduction factor is determined by a fixed factor « €0, 1].

Mathematically, the a-migrative property for a mapping A : [0, 1] x [0, 1] — [0, 1] means that the identity

Alox, y) = A(x, ay) (1)

holds for all x, y € [0, 1]. Property (2) below extended to the class of all bivariate functions on [0, 1] was introduced by Dur-
ante and Sarkoci [8] and further studied by Fodor and Rudas [9], whereas the particular case of aggregation functions was
considered by Beliakov and Calvo [2]. We previously investigated and characterized aggregation functions that are «-migra-
tive for all « €]0, 1] [4]; in particular, we showed that the only migrative function with neutral element 1 is the product
II(x, y) = xy.

Property (2) for some specific aggregation functions has already been considered in the literature. In particular, the fol-
lowing problem was posed for t-norms by Mesiar and Novak [11].

Problem. Is there any t-norm T different from

cxy if max(x,y) <1,
min(x,y) otherwise,

Ty = {
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such that, for a fixed « €]0, 1]
T(ax,y) =T(x,ay) foranyx,y<17 (2)

This problem was definitively solved by Budincevic and Kurilic [3]. Based on their ideas, Mesiar and colleagues proposed a
t-norm T, ([10, Exp. 2.11]) studied by Smutna [14]:

5 ’<n+n*" lf X,y e 0', 1 ’
T.(xy) = {m 2 Yo (3)
0 otherwise,

where, if x > 0(y > 0), (x,)((v,)) is a strictly increasing sequence in N such that

Evidently, for o« = 27 with k e N
1

kax = Zw,

and analogously for y (here and subsequently, whenever the summation bounds are omitted, the index is understood to vary
from 1 to oo). Thus, we have:

T.(ox,y) = T.(x, ay),

for all x,y < 1 (even for all x, y < 1) and for all & =27 with k € N.
The case of o-migrative t-norms has also been considered [6,8,9]. In the particular case of continuous t-norms, they were
shown to be strict t-norms generated by an additive generator ¢ : [0, 1] — [0, oo] satisfying

t(x) = kt(or) + t(o *x), (4)

for all x €]a**+!, %], k € {0, 1,2, ...} (i.e,, on [, 1] the choice of ¢ is free).

Inspired by the results mentioned above, we investigated «-migrative semicopulas with a special focus on copulas and
quasi-copulas. Observe that for associative copulas «-migrativity forces the strictness of the discussed copula and «-migra-
tive strict copulas are generated by an additive generator t given by (4) [2], additionally satisfying the convexity property, i.e.,
t is convex on [, 1] and t'(17) < at’'(o"). Here and in the following, for a given function f : [0, 1] — [0, 1] and for a point
Xo € [0, 1], f(x{) and f(x;) denote the limit from the right and from the left, respectively, of f at x,.

For convenience, we now describe some of the basic notions involved in our study.

Definition 1.1. A (bivariate) aggregation function is a mapping A : [0, 1] x [0, 1] — [0, 1] such that

(i) A(0,0)=0and A(1,1) =1; and
(ii) A is non-decreasing in both variables.

Definition 1.2. Let o € [0, 1]. An aggregation function A : [0, 1] x [0, 1] — [0, 1] is a-migrative if the identity
A(ax,y) = A(x, ay)
holds for all x, y € [0, 1].
Definition 1.3. An aggregation function S: [0, 1] x [0, 1] — [0, 1] is called a semicopula if 1 is its neutral element, i.e.,
S(x,1) =S(1,x) = x for all x € [0, 1]. A 1-Lipschitz semicopula, i.e., a semicopula Q satisfying
Q(x.y) - Q. ¥)| < X =X+ ly -y,
for all x,y, x',y' € [0, 1], is called a quasi-copula.
A semicopula C that is 2-increasing, that is:
Cx,y)+Cx,y)-Cx,y) - Cx,y) = 0,
forall0<x<x <land 0 <y <Yy < 1,is called a copula.

More details are available elsewhere [1,12]. Note that each copula is also a quasi-copula and that quasi-copulas that are
not copulas are termed proper.

The remainder of the paper is organized as follows. In the next section, ¢-migrative semicopulas are characterized and the
o-migrative sum of o-migrative semicopulas is introduced. Section 3 is devoted to the study of «-migrative copulas and quasi-
copulas. In particular, we describe expression (3) for T.. In Section 4, some final considerations are discussed.
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2. a-Migrative semicopulas
Throughout the remainder of the paper, « €]0, 1] is fixed. Because semicopulas possess a neutral element 1, it is evident
that each o-migrative semicopula S satisfies:
S(a, x) = S(x, o) = ox,
and by induction
S(ok, x) = S(x, ok) = okx,
for k =2, 3, .... Hence, for any o-migrative semicopula S the following result holds.

Lemma 2.1. Let S : [0, 1] x [0, 1] be an a-migrative semicopula. Then, for any x, y € [0, 1] such that {x, y} N {1, o, o2, ...} % 0, it
holds that

S(x,y) =H(x,y) =xy.
The next result can also be obtained by induction.
Lemma 2.2. Let S: [0, 1] x [0, 1] be an a-migrative semicopula. Then, for any x,y € [0, 1] and k, m,i,j € {0, 1,2, ...}, it holds
that
S(otkx, o™My) = S(olx, ody),
whenever k+m =1i+j.
These two lemmas have a crucial impact on the following definition. We denote No = {0, 1, 2, .. .}.
Definition 2.1. Let (S;),., be a system of a-migrative semicopulas. Then the function S: [0, 1] x [0, 1] — [0, 1] given by

S y) = {Si(x, y) if (x,y) € E; for some i € Ny,

0 otherwise,
where fori € No, Ei = Upy kengam ki) 0t , 0] x]oe™+1, o), is called -migrative sum of (St)icny,- This is denoted by S = o — (Si);cn, -

Fig. 1 provides a representation of the sets E;.

Proposition 2.3. The a-migrative sum of semicopulas is a semicopula.

Proof. First, we consider the neutrality of 1. Clearly S(1, 0) = S(0, 1) = 0, and if x €]o**!, o*] for some k € Ny, then
S(1,%) = Sk(1, x) =x = Sk(x, 1) =5(x, 1),

a? a? « 1

o« o SZ Sl SO
o

o« o .« o SQ Sl
02
o« o .« o .« o 5'2 ‘
o3

0

Fig. 1. Structure of an o-migrative sum of semicopulas, with o = 0.7.
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so the result follows. The non-decreasing nature of S on E; follows from the non-decreasing property of S;. It remains to
show that S(x,y) <S(x,y) when (x,y)eE, (x,y)cE and j>i (and similarly for the other variable). Suppose
y €]om+1 o™, Then

x €)od™™1 o™ and X' €]l oM,
and hence
S(x,y) = Sj(x,y) < S, y) = oy = Si(ed ™", y) < Si(X, y) =S, y),

as required. O

Proposition 2.4. A semicopula S is o-migrative if and only if there exists a system (S;),., of «-migrative semicopulas such that S is

the o-migrative sum of S;, i.e., S = a — (S;)

ieNg

ieNg*

Proof. Necessity is obvious, as it is enough to consider the constant system (S);_, . To prove the sufficiency, by the previous
proposition we already have that the o-migrative sum S = o — (Si),.y, is @ semicopula. Now observe that if (x, y) € E;, then
(ax, y) and (x, oy) belong to E; ;. Thus, owing to the o-migrativity of S 4, it holds that:

S(ax, y) = S(x, ay).
Moreover, xy = 0 if and only if axy = 0, and in this case:
S(ax, y) = S(x, oy) = 0.
Consequently, each o-migrative sum is o¢-migrative. O
The next result follows directly from Definition 1.2 and Lemma 2.1.
Proposition 2.5. Let S be an a-migrative semicopula. Then the mapping D : [0, 1] x [0, 1] — R given by
S+ (1 —a)x, o+ (1 —)y) —a(l —a)(x+y) —o?

D(x,y) = T (5)

satisfies
(i) D(x, 0) (0,x) =0 for any x € [0, 1] (i.e,, 0 is an annihilator of D);
(1,x

=D
(ii) D(x, 1) = D(1, x) = x for any x € [0, 1], (i.e,, 1 is a neutral element for D); and
(iii) (1 —o)D(x,y) +o(x+y) < (1 —a)D(X,y) +a(X +y') forany x,y, X',y € [0, 1] such that x < x and y <y

Proof. First, note that for (u, v) € [, 1] x [a, 1]

S(u, v) = o(u + v) — o + (1 4)20(%, ;’:Z)

The result follows from the non-decreasing property of S and the identities S(a, v) = aw, S(u, o) = au, S(1, ) = v and
Su,H)=1. O

Definition 2.2. A function D : [0, 1] x [0, 1] — R satisfying the properties given in Proposition 2.5 is called an «-generating
function.

Note that, regardless of the value of « €]0, 1|, any semicopula S is an a-generating function. Moreover, we have the fol-
lowing two results.

Proposition 2.6. The strongest semicopula M(x, y) = min(x, y) is also the strongest «-generating function. That is, M is an o-
generating function and, for any other o-generating function D, the inequality

D(x,y) <M(x,y)
holds for all x,y € [0, 1].
Proof. The fact that M(x, y) = min(x, ¥) is an «-generating function follows from easy calculations. To prove that for any
other a-generating function D the inequality D(x, y) < M(x, y) holds, just observe that D(x,y) < D(1,y) =y and D(x,y) <
D(x,1)=xforallx,y €[0,1]. O
Proposition 2.7. The weakest o-generating function D' is given by
— 1% min(x,y) if max(x,y) <1,

D@ (x, :{
- ) min(x, y) otherwise.
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Proof. Let D be an o-generating function. From (ii) and (iii) in Proposition 2.5 it follows that, for any x, y € [0, 1]

ox = (1—-0o)D(x,0) +ox < (1 —a)D(x,y) + o(x + ),
and
oy =(1-0)D(0,y) + oy < (1 -)D(x,y) + o(x +¥),
so we have that
o o o .
D(Xay) = max <7mxv *m}’) = 7m mln(x7 y)7

as required. O
Now we are ready to give a complete characterization of ¢-migrative semicopulas.

Theorem 2.8. Let S be a bivariate function. Then S is an a-migrative semicopula if and only if there exists a system (D;);y, of o~
generating functions such that

k+1 _ym+1
oMy 4 ak+1y — pkrmi2 4 (1 _ O!)ZOC’<+mD,<+m (x—‘y“r y—o )7

xk,&kﬂ ) m _gm+1
S, ¥) = 9 if (x,y) ok, ok]x]oam 1, o™ for some k, m € N, (6)
0 otherwise.

Proof. To see the necessity, observe that, as S is non-decreasing, from Proposition 2.4, it follows that S can be written as an
a-migrative sum (S;);,,. However, from Eq. (5) in Proposition 2.5, each of the terms S; can be written in terms of an a-gen-
erating function Dy, for (x, y) € [0k*1, ok] x [o™*1, o], with k, m € Ng as follows:

k+1 m+1
X—0o — o
Si(X, y) — Mty + akﬂy _ o(l<+m+2 + (1 _ O{)ZOC’HmD’("m( ; >

Oﬂk _ O(kﬂ ’ om — gm+1
Moreover, from Proposition 2.4 it also holds that Dy ,, = Dy ,,, whenever k + m = k' + m’. Thus, the condition is necessary.
To prove the sufficiency, observe that, if (x, y) €jak+1, o] x]om+1, &™), then

ox — ok+2 Y- om+1
ak+] _ ak+2 ! om — (xm+1>7

S(ax, y) = o™ x4 a"“y —pkm3 1- a)2a1<+m+1Dk+m+] <

whereas

X — (xkﬂ oy — am+2
S(X, ocy) — M2y + ac"ocy _ OCk+m+3 + (-1 _ ac)zoc"“”“kaH (ak — T am{l — amﬂ)'

Evidently, S(ox, y) = S(x, oy), ensuring the o-migrativity of S. To prove the monotonicity, we can use arguments similar to
those for the proof of Proposition 2.4 . Finally, the fact that S(0,0) =0 is obvious from the definition of S, whereas

S(x, 1) =S(1,x) =1 for all x € [0, 1] follows from property (ii) in Proposition 2.5. O
Definition 2.3. Let D be an a-generating function. For the constant system (D), , the o-migrative copula given by (6) is
denoted as Sp, ).

The next result is an easy corollary of Proposition 2.4.

Corollary 2.9. A semicopula S is o-migrative if and only if S is the o-migrative sum S = o« — (Sp,, )
of a-generating functions.

ieny» Where (Dy);c, is a system

Remark 1.

(i) In Theorem 2.8 and Corollary 2.9, the choice of the system (D;),.,, of a-generating functions has no restriction and it is
evident that different systems generate different «-migrative semicopulas.
(ii) The symmetry of an «-migrative semicopula S is equivalent to the symmetry of each a-generating function D; in rep-
resentation (6).
(iii) Owing to Corollary 2.9, a prominent role in the study of o-migrative semicopulas is played by those generated by a
single generating function.

Example 1.

(i) The strongest o-migrative semicopula is:
St [0, 1] x [0, 1] — [0, 1]
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given, for (x,y) €]of!, oak]x]a™! | o], by
S(M.oc)(x7 y) — OCmHX + oc"“y _ OCk+m+2x + (1 _ OC) min(oc’"x _ OCm+k+1, oc"y _ Ocm+k+l)
= o™ x4 oty — ok 4 (1 — o) min(a™x, oy).

Its support is depicted in Fig. 2 for oo = 0.7. Remember that the support of a semicopula S, by analogy with that of a copula, is
its support when considered as a probability distribution function on [0, 1]?; that is, the complement of the union of all open
sets in [0, 1]* with S-measure zero [12]. Observe also that S, 1s a singular copula (i.e., a copula with support having zero
Lebesgue measure).

(ii) The weakest o-migrative semicopula is

S :[0,1] % [0, 1] — [0, 1]

0¥,
given, for (x,y) € [0+, ak[x[o™*1, o™, by
S (% ¥) = max(a™x, ot ly),
whereas, if {x,y} N {0,1} # 0
Spw, 5 (X, ¥) = min(x, y).

(iii) For the product 1T, it holds that IT = Sy ,.
(iv) The (1/2)-migrative t-norm T., introduced in Section 1, satisfies T, = S(D,%)' where the (1/2)-generating function D is
given by

2T.(x,y) —x—y+1 if min(x,y) >0,
0 otherwise.

pex.y) = {

3. a-Migrative copulas and quasi-copulas

As observed in Example 1, an ¢-migrative semicopula Sp ) can be generated by an a-generating function D that is not a
semicopula, as the non-decreasing property of D may be violated. By contrast, for any semicopula H, Sy ) is again an
(o-migrative) semicopula. In the case of t-norms (associative and symmetric semicopulas), we have all possible situations.
As shown in Example 1 (iv), there are t-norms generated by non-associative and non-monotonic o-generating functions. By
contrast, there are t-norms of the form Sy ., where T is a t-norm. For example, for the Lukasiewicz t-norm
Ti(x,y) = max(x +y — 1, 0), the corresponding a-migrative semicopula S(r, ,, is the weakest a-migrative 1-Lipschitz t-norm
and its additive generator t : [0, 1] — [0, o] is a piecewise linear function determined by points (¢, i), i € No (cf. Ref. [2]). The
support of S, 4 (for o = 0.7) is depicted in Fig. 3. Example 1 (i) shows that not every t-norm T generates an a-migrative
t-norm (associativity of Sy, is violated). A different situation occurs for the class of copulas and quasi-copulas.

0(4 (13 0(2 o 1

Fig. 2. Support of S, (for o = 0.7).
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Fig. 3. Support of S, 4 (for o = 0.7).

Theorem 3.1. A semicopula S is an a-migrative copula if and only if there exists a system (C),.y, of copulas generating S by means

of (6).

Proof. Observe that the 2-increasing property of a function C : [0, 1] x [0, 1] — [0, 1], together with 0 being the annihilator of
C and 1 being the neutral element of C, ensures that C is a copula. Moreover, it is not difficult to check that the 2-increasing
property of C over [0, 1] x [0, 1] is equivalent to the 2-increasing property of C over all rectangles [o*+!, o] x [a™+1, o™], for
k, m € Ny. These facts, together with Proposition 2.5 and Theorem 2.8, prove the result. O

Corollary 3.2. Let D : [0, 1] x [0, 1] — R be an o-generating function. Then the a-migrative semicopula Sy 4 is a copula if and
only if D is a copula.

It is evident that the strongest «-migrative copula is Sy, . As already mentioned, it is a singular copula for which the sup-
port is depicted in Fig. 3. More details on singular copulas are available elsewhere [12].

Similarly, the weakest c-migrative copula is Sr, ), which is indeed a t-norm, and its additive generator (unique up to a
positive multiplicative constant) £, apha) : [0, 1] — [0, oc] is given by

X\ .
b apna) (%) = k(1 = o) + (1= 2¢) if x €l o)
In this case we also have a singular copula with support as shown in Fig. 3.
For o-migrative quasi-copulas we have only a sufficient condition.
Proposition 3.3. Let (Q;);.y, be a system of quasi-copulas. Then the a-migrative semicopula S generated by this system as in (6) is

a quasi-copula. It is a proper quasi-copula whenever there is at least one proper quasi-copula in the system (Q;);cp,-

Proof. The monotonicity and 1-Lipschitz property of Q; ensure the same properties for S on the closure of E;. It is evident that
Sis a continuous o-migrative semicopula and thus 1-Lipschitzianity of S on the closures of all E; ensures the 1-Lipschitz prop-
erty of S on the whole domain [0, 1] x [0, 1] = UE.. To prove this, observe that if x € [¢*1, a¥] and y € [¢*+2, a*+1] for some
k € No, then we have that Q(x, z) > Q(y, z) for all z € [0, 1]. Thus, in particular

1Q(x,2) — Q(y, 2)| = Qi(x, 2) — (""", 2) + Qi(*"", 2) — Qi1 (¥, 2).

However, owing to the continuity of Q in the closure of E; and E;,1, Q;(0**', z) = Qi1 (o**1, 2). As Q;(Q;.1) is 1-Lipschitz in
Ei(E;;1), we arrive at the inequality

Q(x,2) = QY. 2| < (x — o) + (& —y) =x —y =[x~ yl.
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Since any two points in UE; can be connected by a finite number of steps, like this one, (perhaps also considering the other
variable), the 1-Lipschitz property follows. The last claim in the statement of the Proposition is evident. O

Example 2. There are o-migrative quasi-copulas S », generated by «-generating functions that are not quasi-copulas. As an
example, take D : [0, 1] x [0, 1] — R given by
—min(x, y) if x,y €10,1/3]
Dx,y) =< x+y—1 ifx,ye(1/3,1]
3xy —2min(x,y) otherwise.
Then D is a 1/2-generating function. Moreover, it is easy to see that D is also a continuous and 1-Lipschitz function. If we
consider the 1/2-migrative semicopula Sip 1,2, we have that

max(2x,2™y)

2k+m71 if (X7 y) e]’(.m‘,
2x42my 3 if (x el
Spap(Xy) =4 2 2T *,¥) € Lim,

1-2%x—2"My—min(2kx, 2™

Qk+m y)+3Xy lf (va) eIk,rn/{_]k,m ULk.m}v
0 otherwise,

where Iy , :]_Zk%,zlk]_x] s 37 Jim _:]Zk%, i zﬁﬁlx]zn}j, 1 2"%1] and Ly m = [5 5, _Zik].x 5 55 ) f(_)r k, m & No. This function is
1-Lipschitz, since D is. Thus, Sip,1,2) is a (1/2)-migrative quasi-copula. However, it is clear that D is not a quasi-copula and not

even an aggregation function since it is not greater than or equal to zero in its whole domain.

4. Concluding remarks

For a fixed o €]0, 1], we have completely characterized «-migrative semicopulas and a-migrative copulas. As a by-prod-
uct, a new construction method for copulas was obtained. This assigns to a given copula C an «-migrative copula S . This
new construction method raises a problem: is there a copula C different from the product IT such that C = Si¢ ,? Other re-
lated problems for further investigations arise. For example, if a copula Cis g-migrative, what can we say about the o-migra-
tive copula S )?

Recall that Siburg and Stomeinov recently introduced a gluing construction method for copulas [13]. For p €]0, 1] and two
copulas C; and G, the function C = vg — ({0, p, C1), (1, p, C3)) : [0, 1] x [0, 1] — [0, 1] (where vg denotes vertical gluing), gi-
ven by

c pGi (. y) if x 10, p|
)= p+(1-p)GC (%7)') otherwise,
is a copula. Similarly, horizontal gluing C = hg — ({0, p, C1), (p, 1, C3)) is given by
pCy (x,3) if y [0, pl
Cix,y) =
p+(1-pGC (x, %) otherwise.

The next result is also of interest for further research.

Proposition 4.1. Let D : [0, 1] x [0, 1] — [0, 1] be an a-generating function. Then the following are equivalent.

(i) Sp,w is an \/o-migrative copula.

(“) There iS a COpula CSuCh that D = Vg - (<07 p-, hg - (<07 p7 C>7 <p7 1*, C>)> <1 p7 hg - (<07 p7 C>= <p 17 C>))v Where p = 1;/\_0)&'

Note that the roles of horizontal and vertical gluing in the above proposition can be exchanged. Moreover, owing to the
above proposition, any copula of type S« can be considered as a fractal structure. Indeed, the following hold:

(i) Sic, (%, ¥) = 07*S(c o (0kx, oky) for all k € No and x, y € [0, 1];
(ii) Sc.a) = vg — ((ok*+1, ok, Cy)), with k € No, and where C; = hg — ((¢+!, ok, C)); and
(iii) Sic.» = hg — (o1, ok, C3)), with k € No, and where C, = vg — ((ot¥*1, ok, C)).

As an example, recall Sy ) [see Example 1 (i) and Fig. 3] for which the support of the corresponding copulas C; and C; is
depicted in Figs. 3 and 4, respectively, for « = 0.7.(See Fig. 5)

Note finally that a-migrative copulas can be viewed as a special type of rectangular patchwork based on the product cop-
ula; compare Refs. [7,5].
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Fig. 4. Support of the vertical gluing copula C; for Sy 5 and o = 0.7.

a o o a

Fig. 5. Support of the horizontal gluing copula C, for Sy, and o = 0.7.
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